NovelAI原版部署教程

Xial 发布于 2022-10-09 14 次阅读


NovelAI原版部署教程

22/10/08更新,部署了一下原版网页,点击登录即可玩,显卡数量有限人多了可能会爆炸或者很慢,耐心等等,不行就f5

https://ai.nya.la/

22/10/08更新:替换失效的奶牛快传链接到onedrive

硬件需求:

一台拥有一张至少有11G 显存的NVIDIA GPU的linux系统的x86设备。

软件需求:

NVIDIA驱动(CUDA 11.6 Toolkit)

Docker 19+

nvidia-container-toolkit

准备工作:

1. 安装docker

该命令国内访问较慢,可以查国内镜像安装

curl -fsSL https://get.docker.com | bash

2. 安装nvidia-container-toolkit

Ubuntu, Debian:

distribution=$(. /etc/os-release;echo $ID$VERSION\_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit

sudo systemctl restart docker

CentOS/RHEL

distribution=$(. /etc/os-release;echo $ID$VERSION\_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo

sudo yum install -y nvidia-container-toolkit

sudo systemctl restart docker

3. 安装显卡驱动

这个略过

4. 确认显卡驱动已经安装好, nvidia-smi可以看到显卡

5. 确认nvidia-container-toolkit安装成功

docker run --help | grep -i gpus

6. 下载NovelAI模型相关文件

https://sanae1-my.sharepoint.cn/:u:/g/personal/kaze_sanae1_partner_onmschina_cn/Eezd5aJPk9xHmb5iVcXb768Bm5AUEHp2DM9biozM-54y9w?e=T6DaPd

7. 解压NovelAI模型相关文件

tar -zxvf novelai.tar.gz

8. 下载docker镜像相关文件

https://sanae1-my.sharepoint.cn/:u:/g/personal/kaze_sanae1_partner_onmschina_cn/ESe-AjlXEhNDvnwOyZtBjKkBnLa69b8qTYi2dGzJmKq5IA?e=EQol8q

9. 导入Docker镜像

docker load -i novelaidocker.tar

10. 运行Docker

(如果希望包含nsfw内容,则把 -e MODEL\_PATH="/root/stableckpt/animesfw-latest" 改成 -e MODEL\_PATH="/root/stableckpt/animefull-latest")

解压的 novelai 位置替换为你实际解压 NovelAI 模型相关文件出来的 novelai 文件夹的位置,如 /root/novelai

docker run --gpus all -d -p 80:80 
-v 解压的NovelAI位置:/root 
-e DTYPE="float32" 
-e AMP="1" 
-e MODEL="stable-diffusion" 
-e DEV="True" 
-e MODEL\_PATH="/root/stableckpt/animesfw-latest" 
-e MODULE\_PATH="/root/stableckpt/modules" 
-e TRANSFORMERS\_CACHE="/root/transformer\_cache" 
-e SENTRY\_URL="" 
-e ENABLE\_EMA="1" 
-e VAE\_PATH="/root/stableckpt/animevae.pt" 
-e BASEDFORMER="1" 
-e PENULTIMATE="1" 
novelai:latest gunicorn main:app 
--workers 1 
--worker-class uvicorn.workers.UvicornWorker 
--bind 0.0.0.0:80

11. 查看容器状态

查询出容器ID

docker ps

docker logs \[Container ID\]

出现“Application startup complete.”即代表程序已经就绪

docker attach \[Container ID\]

attach进入docker可以看到当前任务实时的生成进度

12. 请求API

参考代码,具体参照 leak 的前端后端项目,以及其中的 sd-private\hydra-node-http\main.py

prompt 中 masterpiece, best quality, 开头对应原版 web Add Quality Tags 选项,不建议删除,后面直接跟自己 prompt 即可

uc 部分对应 web Undesired Content,建议保留默认

sampler 是采样方法,可选 plms/ddim/k_euler/k_euler_ancestral/k_heun/k_dpm_2/k_dpm_2_ancestral/k_lms

seed 是种子,自己随机一个整数数字,不然一直会出一样的结果。

n_samples 代表要生成几张图片

import requests
import json
import base64
import random

endpoint = "http://10.10.12.67/generate"

data = {
    "prompt": "masterpiece, best quality, brown red hair,blue eyes,twin tails,holding cat",
    "seed": random.randint(0, 2\ * \ * 32),
    "n\_samples": 1,
    "sampler": "ddim",
    "width": 512,
    "height": 768,
    "scale": 11,
    "steps": 28,
    "uc": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"
}

req = requests.post(endpoint, json = data).json()

output = req\["output"\]

for x in output:
    img = base64.b64decode(x)
    with open("output-" + str(output.index(x)) + ".png", "wb") as f:
        f.write(img)

生成的效果图示例

1girl,apron,arm up,black dress,blue eyes,dress,frilled dress,hand up,indoors,long hair,looking at viewer,maid,maid apron,maid headdress,mop,petals,puffy short sleeves,puffy sleeves,short sleeves,silver hair,smile,solo,very long hair,white apron,wrist cuffs

转自:

-->